LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
M.Sc. DEGREE EXAMINATION - PHYSICS
THIRD SEMESTER – APRIL 2013
PH 3900 – OUANTUM MECHANICS
(LOCEAT LON VESTRA)
Date : 09/05/2013 Dept. No. Max. : 100 Marks Time : 9:00 - 12:00
Part – A
Answer ALL Questions. (10x2=20)
 List out any four failures of Classical Mechanics. What is de Broglie hypothesis? What are the two theorems on Hermitian operator? When do we say two functions f₁(x)& f₂(x) are orthogonal to each other?
5. Evaluate $\int_0^{2\pi} \cos(x) \delta(\pi - x) dx$
 6. Define degeneracy? What is meant by degree of degeneracy? 7. Write down the Schrodinger wave equation for a particle of mass 'm' moving in a potential V(x) = A sin (kx/x)
8. Write down Geiger- Nuttal law for α - decay 9. Plot the probability density of a linear harmonic oscillator in its ground state.
10. Write down the eigenvalues of L ² and L _z for the eigenstate $Y_{3,-2}(\theta, \varphi)$.
$\mathbf{Part} - \mathbf{B}$ Answer any FOUR Questions $(4x75-30)$
11. Give an account of Planck's theory of black body radiation. Show that it reduces to Rayleigh – Jeans law and Wien's law
in the appropriate limits. $[a, b]$
12. If A and B are two vectors given by $ A\rangle = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$ and $ B\rangle = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$, evaluate $\langle A B\rangle$ and $ A\rangle \langle B $ and
elaborate their difference. a^2
13 (i) Check if the given operators are Hermitian: i) $\frac{\partial}{\partial x}$, ii) $\frac{\partial}{\partial x^2}$ (2+3.5)
(ii) Evaluate the commutator $\left[\frac{a}{dx}, F(x)\right]$ (2)
14. Solve the Schroedinger wave equation and obtain the energy eigenvalues of a particle of mass 'm' in a three dimensional square well potential of side 'L'. What is the degeneracy $\frac{14b^2}{14b^2}$
of the state of energy $E = \frac{110}{8mL^2}$? 15. Write down the eigenvalue equation of the angular momentum operator and solve it to obtain its eigenfunctions
Part – C
Answer any FOUR Questions. (4x12.5=50)
 16. Give a detailed account of the fundamental postulates of Quantum Mechanics. 17. Using commutator algebra, obtain Heisenberg's uncertainty relation. 18. Using the theory of particle in a potential well, show that a quantum particle has finite probability to exist in classically forbidden region. 19. Set up the Schrodinger wave equation for a linear harmonic oscillator and obtain the energy eigenfunctions. Plot the eigenfunctions and probability density distribution as a function of 'x' for the lowest two energy levels.
20. Solve the radial part of Schrodinger wave equation and obtain the energy eigenvalues and eigenfunctions for Hydrogen atom.